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Sequential treatment of R-(+)-1-octyn-3-01 acetate with n-butyllithium, tri-n- 
butylborane and acetic acid produces 5,6-dodecadiene which is enriched in the 
S-(+) enantiomer. The migration of the alkyl group from boron thus occurs pre- 
ferentially anti to the leaving group. 

Trialkylboranes are well known for the transformation of the alkyl group 
into a variety of products-with complete retention of configuration [l, 21. 
These reactions are believed to occur through a rearrangement of an organobo- 
rate anion in which one of the groups contains a suitable leaving group (eq. l- 
3). While there is a great amount of data on the stereochemistry of the transfer- 
ring aIky1 group, very little is known about the stereochemistry of the carbon 
containing the leaving group. The rearrangement could occur simultaneously 
with the X group leaving, giving inversion (SN~ type) (eq. 1) or retention of 
configuration (eq. 2). Alternatively, the rearrangement could occur with prior 
ionization of the leaving group (SNl type) and subsequent loss of stereochemi- 
stry (eq. 3). It has been reported that hydride migration from boron proceeds 
with inversion of stereochemistry at carbon [3] _ 

Propargyl chlorides [4] or acetates [5] may be converted into allenes via or- 
ganoboranes. The postulated mechanism looks like a 3~2’ reaction (eq. 4-7). 
Since optically-active propargyl acetates are readily available, the reaction re- 
presents a good method for monitoring the stereochemistry of the rearrange- 
ment with respect to the leaving group. 

(E)-(+)-l-Octyn-3-01 acetate, [a] D + 75.1” (neat) [6], prepared from the 
known (R)-(+)-alcohol [7] was treated in tetrahydrofuran with n-butyllithium 
at -120°C followed by tri-n-butylborane. Upon warming to room temperature 
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aprecipitate formed. Protonation with acetic acidthenproduced 5,6-dodeca- 

diene. (Protonation before the precipitate formed gave low yields of allene). 
Following basic-hydrogen peroxide oxidation, the allene along with approxi- 
mately 10% of 5-dodecyne was isolated in 80% combined yield by column 

chromatography on silica gel. The allene had a specific rotation of [a] D + 
12.90” (neat) (14.33” corrected for the acetylene impurity). The allene is as- 
signed the.S configuration based on the Brewster--Lowe rule [S] . The alkyl 
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grcup from boron thus migrates preferentially in an anti-relationship to the ace- 
tate (eq. 8). The allenic borane resembles a vinylborane and as such would be 
protonated by acetic acid with retention of configuration [9]. 
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The maximum rotation for the allene is not known. Using the assumption 
based on Brewster’s model of optical activity that all simple allenes have a simi- 
lar molecular rotation and a value of 100” for the molecular rotation of 3,4- 
heptadiene [lo], we estimate that our allene is 23% optically pure. Attempts 
to increase the rotation by changing the leaving group have so far failed. 
However, diethyl ether solvent increases the optical purity to 40%. 

The allenic borane appears to be configurationally unstable at room tempera- 
ture. A sample stirred overnight produced the allene, now contaminated with 
28% oi the acetylene, in a combined yield of 70%. The rotation was reduced to 
[OL] ,, + 1.22” (1.69” corrected for the acetylene impurity). The allenic- borane 
may undergo a 1,3-boron shift similar to the allylic boranes [ll] (eq. 9). How- 
ever, such a rearrangement would have to occur with inversion on the allenic 
system since migration-rotation-migration gives back allene of the same abso- 
lute configuration. Another explanation may be that boron is lowering the en- 
ergy barrier for isomerization around the double bonds of the allene. 
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